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Abstract

This paper addresses the use of passivity-based tech-
niques to obtain robust controller design for non-passive un-
certain systems. It extends the previous results on passivity-
based control of non-passive systems to include robustness
of passification in the presence of plant uncertainty. In par-
ticular, sufficient conditions for robust passification are ob-
tained for different passification methods in the presence of
various types of plant uncertainties. These conditions can be
used either to check the robustness of a controller designed
for a nominal plant model or to perform iterative controller
design to meet certain robustness criteria. The plant un-
certainty models used include additive, multiplicative, and
feedback uncertainty. For each of these uncertainty models,
conditions for robust passification are derived for three dif-
ferent passification methods, namely, series, feedback, and
feedforward passification.

1 Passivity-based Control of Non-Passive
Systems

A large class of physical systems can be classified as
being naturally passive. Examples of such systems in-
clude flexible space structures with collocated and compat-
ible actuators and sensors. Robust stabilization and con-
trol of such systems has received considerable attention in
the literature, and a number of stability results exist in
that area. The most basic of the stability results states
that the negative feedback interconmection of two passive
systems is Lyapunov-stable. Numerous other stability re-
sults exist which are essentially different variations of this
basic result. The least restrictive result for linear, time-
invariant (LTI) systems states that the feedback intercon-
nection of a positive-real (PR) system and a marginally
strict positive-real (MSPR) system is asymptotically stable
[Jos.96]. Some nonlinear extensions of these results were
obtained in [Jos.96a; Kel.96]. Passivity-based controllers
have proved to be highly effective in robustly controlling in-
herently passive linear and nonlinear plants such as, flexible
space structures or multilink flexible robots [Kel.96, Jos.89].
The passivity of such systems is model-independent; there-
fore, passivity-based controllers are robust to modeling er-
rors and parametric uncertainties. Most physical systems,
however, are not inherently passive, and passivity-based
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control techniques cannot be used directly for such systems.
One method of making non-passive systems amenable to
passivity-based control is to passify such systems (i.e., ren-
dering system passive) using suitable compensation. If the
compensated system is robustly passive despite plant un-
certainties, it can be robustly stabilized by any MSPR con-
troller. In [Kel.97] various passification techniques were pre-
sented and some numerical examples were given for demon-
strating the use of such techniques. A brief overview of
passification methods presented in [Kel.97)] is given in the
next subsection.

1.1 Passification Methods

Four different passification methods, series, feedback, feed-
forward, and hybrid, passification, were given in [Kel.97]
for finite-dimensional linear, time-invariant non-passive sys-
tems. The idea of series passification is to design a se-
ries compensator C,(s) for the non-passive plant P(s) such
that the compensated plant Pe(s) = C:(s)P(s) (or Pc(s) =
P(s)C,(s)) is positive-real. Similarly, in feedback passifica-
tion the objective is to design a feedback compensator Cy(s)
such that the closed-loop system P(s)[I + P(s)Cy(s)]™" is
positive-real. Similar approaches can be taken in the other
two methods of passification. T'wo important classes of non-
passive systems which demand more attention are open-
loop unstable systems and nonminimum-phase systems. In
the case of open-loop unstable systems, the first step in
passification is to stabilize the system using feedback com-
pensation and then use, if necessary, additional compensa-
tion to render the stabilized plant positive-real. Similarly,
for nonminimum-phase systems, the first step in passifica-
tion is to render the system minimum-phase by feedfor-
ward compensation and then use additional compensation
if necessary to render the resulting minimum-phase plant
positive-real. Once passified, the system can be controlled
by any marginally strict positive-real (MSPR) or weakly
SPR (WSPR) controller [Jos.96, Loz.90]. Methods for de-
signing WSPR controllers that are optimal in the linear-
quadratic-Gaussian (LQG) sense or satisfy an He, perfor-
mance bound, were discussed in [Loz.90], [Had.94]. One
important thing to be noted here is that in the case of in-
herently passive systems, the use of an MSPR controller
gurantees stability robustness to unmodeled dynamics and
parametric uncertainties; however, in the case of non-passive
systems which are rendered passive using passifying com-
pensation, the stability robustness depends on robustness



of passification. That is, the problem of robust stability is
transformed into the problem of robust passification. It is
therefore necessary to develop the mathematical framework
to address this problem. In this paper, a number of analyt-
ical sufficient conditions are derived to check the robustness
of passification. In the next section we present a series of
theorems which give conditions under which passifying com-
pensators would be robust in the presence of different types
of plant uncertainties.

2 Robustness of Passification

In deriving the robust passification conditions, we have
considered three types of passifying compensators: series,
feedback, and feedforward, and three types of plant uncer-
tainty models: additive, multiplicative, and feedback. Thus,
in total, we have nine different conditions given below. The
proofs, which are based on the definition of positive-realness
of the transfer function, are omitted due to space limita-
tions. P(s), K(s), and A(s) denote m x m transfer func-
tion matrices of the nominal plant, the passifying compen-
sator, and the uncertainty, respectively. (That is, the class
of plants considered here has equal number of inputs and
outputs). In the theorem statements, * denotes the conju-
gate transpose and the argument jw has been omitted for
brevity. All conditions presented in the following theorems
require that the nominal passified plant is at least WSPR.

2.1 Series passification

It is assumed in this section that a pre-compensator K(s)
is used for series passification. However, similar results can
be obtained for post-compensator, and for both pre- and
post-compensators.

2.1.1 Additive uncertainty

Theorem 1 Suppose a non-passive plant P(s) is passified
by a series compensator K(s). Then a sufficient condition
for robust passification in the presence of additive plant un-
certainty, A, is given by
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Figure 1: Series passification with additive uncertainty

2.1.2 Multiplicative uncertainty

Theorem 2 Suppose a non-passive plant P(s) is passified
by a series compensator K(s). Then a sufficient condition

for robust passification in the presence of multiplicative plant
uncertainty, A, is given by

Amin(PK + K*P*)

TB) < srm

Yw >0 (2)

A similar condition can be obtained for multiplicative
uncertainty at the output.
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Figure 2: Series passification with multiplicative uncer-
tainty

2.1.3 Feedback uncertainty

Theorem 3 Suppose a non-passive plant P(s) is passified
by o series compensator K(s). Then a sufficient condition
Jor robust passification in the presence of feedback plant un-
certainty, A, is given by
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Figure 3: Series passification with feedback uncertainty

2.2 Feedback passification
2.2.1 Additive uncertainty

Theorem 4 Suppose a non-passive plant P(s) is passified
by a feedback compensator K(s). Then a sufficient condi-
tion for robust passification in the presence of additive plant
uncertainly, A, is given by

— 2 _
5(a) < 2H Vb dac N Y @)

where = 7(K), b = a(I + PK) + (PK), ¢ =

a
—Am‘m%i_‘l; an~d P = PUI + PK)*, or (4) is satis-
fied with a = 3(P)5(K + K*), b = 25(P)[1 + 5(PK")),
P=(I+PK) P=PpP.

2.2.2 Multiplicative uncertainty

Theorem 5 Suppose a non-passive plant P(s) is passified
by a feedback compensator K(s). Then a sufficient condition
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Figure 4: Feedback passification with additive uncer-
tainty

for robust passification in the presence of multiplicative plant
uncertainty, A, is given by

—b+ Vb2 — 4dac
2a

T(A) < Vw >0 (5)

where a = G[P(K+K*)P*], b = 2(5(P)+o[P(K+K")P"],
c= —Mfiﬁ, and P = P(I + PK)*, or if (5) is sat-
isfied with a = 26 (P)a”(P)7(K), b = 25(P)a[P(I + KP),
P=(I+PK)™!,P=PP.

A similar condition can be obtained for multiplicative

uncertainty at the output.
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Figure 5: Feedback passification with multiplicative un-
certainty

2.2.3 Feedback uncertainty

Theorem 6 Suppose a non-passive plant P(3) is passified
by a feedback compensator K(s). Then a sufficient condi-
tion for robust passification in the presence of feedback plant
uncertainty, A, is given by

Amin (F + —P—‘)
2 (a(P))?

where P = P(I + PK)” or if (6) is satisfied with P =
(I+PK)'P.

F(A) < Vw > 0 (6)

2.3 Feedforward passification
2.3.1 Additive uncertainty

Theorem 7 Suppose a non-passive plant P(s) is passified
by a feedforward compensator K (s). Then a sufficient condi-
tion for robust passification in the presence of additive plant
uncertainty, A, is given by
Amin(P+ P’
7(A) < .L(I;ﬂ Yw >0 )

where P=P + K.
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Figure 7: Feedforward passification with additive un-
certainty

2.3.2 Multiplicative uncertainty

Theorem 8 Suppose a non-passive plant P(s) is passified
by a feedforward compensator K(s). Then a sufficient con-
dition for robust passification in the presence of multiplica-
twe plant uncertainty, A, is given by

Arrn"n (ﬁ + ﬁ*)

7(A) < 2 5(P)

Yw >0 (8)
where P=P + K.

A similar condition can be obtained for multiplicative
uncertainty at the output.

Figure 8: Feedforward passification with multiplicative
uncertainty

2.3.3 Feedback uncertainty

Theorem 9 Suppose a non-passive plant P(s) is passified
by a feedforward compensator K(s). Then a sufficient con-
dition for robust passification in the presence of feedback
plant uncertainty, A, is given by

— 2 _
7(4) < =2t Vb — dac "2'; fac v >0 9)



where a = E_z(P)E(K;i- K*), b= 2[6(P + K*)&(P)], c =
“Amin(P+P ), and P=P+ K.

Figure 9: Feedforward passification with feedback un-
certainty

3 Numerical Examples

In this section, we present two numerical examples to
demonstrate the use of passivity-based robust control de-
sign techniques for uncertain non-passive systems. In the
first example, we consider a long planar elastic beam with
free-free boundary conditions. The problem is to control the
rotation of the beam using a pair of non-collocated torque
actuator and rate sensor. The truth model consists of one
rigid body mode and the first five elastic modes. The de-
sign model includes only the rigid body plus first two elastic
modes. The remaining three elastic modes were modeled as
additive plant uncertainty. The first five natural frequencies
of the free-free modes are (in rad/sec): 0.428, 1.172, 2.297,
3.797, and 5.672. The damping ratio for all five modes was
assumed to be 0.028. The nominal plant model, which is
not passive, was passified using a simple first order feed-
back compensator with pole at —100 and dc gain of 10.
The robustness of passification to the unmodeled dynamics
(consisting of last three elastic modes) was then checked by
using the sufficient condition derived in Theorem 4. As seen
in Figure 10, the robust passification condition was satisfied
for additive uncertainty model consisting of the last three
elastic modes. (The (M) in Fig. 10 represents the right
hand side of Eq. (4)). The robustness of passification for
simultaneous, parametric and unmodeled, uncertainty was
also checked by assuming +10% variation in the first two
elastic mode frequencies. It was observed that the plant
remains robustly passive under such simultaneous pertur-
bations (Figure 11). However, the sufficient condition of
Theorem 4 is violated, i.e., the 7(A) curve does not remain
below &(M) curve for certain frequency range. However, it
is to be noted that the additive uncertainty model is con-
servative when used for modeling parametric perturbations.

In the second example, we consider a longitudinal dy-
namic model of an F-18 HARV configuration [Ost.94]. The
HARV configuration is a modified version of an F-18 air-
plane model which includes multi-axis thrust vectoring ca-
pability for pitch and yaw control power. The longitudi-
nal models for pitch-axis control of HARV for four different
flight conditions at the altitude of 15, 000 ft are considered as
focus configurations for controller design. The four configu-
rations had the following combinations of speed and normal
acceleration: (1) 0.7 Mach and 1g, (2) 0.6 Mach and 1g, (3)
0.49 Mach and 1g, and (4) 0.3 Mach and 0.37g. The control

input to the plant is elevator deflection and the output is
the pitch rate. The controller design was obtained based
on a nominal 4th-order plant model for the second flight
condition, i.e., altitude of 15,000 ft, speed 0.6 Mach, and
acceleration of 1g. The passification of the nominal plant
model was achieved by using a proper, third-order series
compensator with poles at —10, -.05, and —.0035 and zeros
at ~1, —0.5, and —0.08. The passification was chosen so as
to be robust to mach number variation between 0.30 to 0.70
and g-variation between .37 to 1. In this case also the robust
passification condition was found to be conservative. The
plant uncertainty (A(P)) was modeled as additive pertur-
bation by looking at the largest difference between the mag-
nitude plots of the nominal model (Model 2) and perturbed
models (Models 1, 3, and 4). As seen in Figure 12, the passi-
fication was found to be robust for all four flight conditions
(as indicated by phase remaining between +90°). However,
the robustness condition (not shown) of Theorem 1 was vi-
olated, i.e., the 3(AP) could not satisfy the inequality of
Eq.(1) in certain frequency range. Having robustly passi-
fied the plant, a short-period approximation of the plant was
used as the design model for the plant. An LQG-optimal,
fifth-order WSPR controller [Loz.90a] was then designed for
the design flight condition to obtain satisfactory response.
For detailed description on the controller design please refer
to [Kel.97].

4 Concluding Remarks

Robust control of non-passive systems via passification
was considered. A number of sufficient conditions were ob-
tained for robust passification of non-passive linear, time-
invariant systems using series, feedback, and feedforward
passification, in the presence of additive, multiplicative, and
feedback uncertainties. These conditions can be used to
check robustness of passification or for iterative controller
design. The results were demonstrated by application to
rotational control of a planar elastic beam and longitudinal
control system design for a fighter aircraft model. For the
elastic beam example, the robust passification condition was
satisfied for additive perturbation. For unmodeled dynamics
and parametric uncertainty in the design model (modeled
together as additive perturbation), the same condition was
found to be too conservative. Robust passification condi-
tions in the presence of simultaneous perturbation models
are not available at present and future work should address
this problem. In the case of the fighter aircraft example, the
phase plots showed that robust passification was achieved
for all four flight conditions that were considered; however,
the robustness condition was not satisfied. In summary, the
conditions presented offer a useful tool in the design of ro-
bust controllers for non-passive systems using passification
techniques proposed in [Kel.97]. However, these conditions
are conservative and further research is necessary to obtain
weaker conditions.
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Figure 10: Robustness test for Feedback passification
with additive uncertainty
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Figure 11: Bode plots of passified and unpassified
plants
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